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Abstract—In-app advertising is a multi-billion dollar industry
that is an essential part of the current digital ecosystem, and
is amenable to sensitive consumer information often being sold
downstream without the knowledge of consumers, and in many
cases to their annoyance. While this practice, in cases, may result
in long-term benefits for the consumers, it can result in serious
information privacy (IP) breaches of very significant impact
(e.g., breach of genetic data) in the short term. The question
we raise through this paper is: Does the type of information
being traded downstream play a role in the degree of IP risks
generated?. We investigate two general (one-many) information
trading market structures between a single data aggregating
seller (e.g., enterprise app) and multiple competing buyers (e.g.,
ad-networks, retailers), distinguished by mutually exclusive and
privacy sanitized aggregated consumer data (information) types:
(i) data entailing strategically complementary actions among
buyers and (ii) data entailing strategically substituting actions
among buyers. Our primary question of interest here is: trading
which type of data might pose less information privacy risks for
society? To this end, we show that at market equilibrium IP
trading markets exhibiting strategic substitutes between buying
firms pose lesser risks for IP in society, primarily because the
‘substitutes’ setting, in contrast to the ‘complements’ setting,
economically incentivizes appropriate consumer data distortion
by the seller in addition to restricting the proportion of buyers
to which it sells. Moreover, we also show that irrespective of
the data type traded by the seller, the likelihood of improved IP
in society is higher if there is purposeful or free-riding based
transfer/leakage of data between buying firms - simply because
the seller finds itself economically incentivized to restrict the
release of sanitized consumer data both, with respect to the span
of its buyer space as well as in improved data quality.

Index Terms—information privacy, strategic substitute, strate-
gic complement, information market, Bayes Nash equilibria

I. INTRODUCTION

Mobile applications (apps) are driving a major portion of the
modern digital society, including business small and large as
well as the state-of-the-art IoT/CPS systems. In-app advertis-
ing is an essential part of this digital ecosystem of mostly free
mobile applications, where the ecosystem entities comprise
the consumers, consumer apps, ad-networks, advertisers, and
retailers (see Figure 1 (from [1]) for a simplified representa-
tion). As a social objective, a ‘win-win’ deal is desired between
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Fig. 1: Tllustration of an Example Mobile In-App Ad Ecosystem

(a) the commercial interests of entities (e.g., enterprises, apps,
databoxes) that aggregate and sell consumer data and those
(e.g., ad-networks, retailers) that buy this data from the latter,
(b) interests of consumer behavior targeting advertising firms,
and (c) preserving consumer side information privacy (IP). The
basic requirement for this ‘win-win’ ecosystem to exist in the
first place, is the flow of personalized information from the
consumer to the advertisers and retailers via the ad-networks
(or directly from consumer to the advertisers/retailers) for
effective/profitable ad placements, that subsequently motivate
the latter to collect personal data about consumers via apps.
As a popular example, the app version of Evite.com may
sell lists of their consumers attending a party in a given
location to targeted advertisers via ad-networks run by Google
and Facebook. Similarly', the gene testing company 23andMe
might sell their clientele information directly to pharmaceuti-
cal companies in order for the latter to develop medical drugs.
While this practice, in cases, may result in long-term benefits
for the consumers, it can result in serious information privacy
(IP) breaches of very significant impact (e.g., breach of genetic
data leading to job/workplace discrimination) in the short term.
Research Motivation - In view of the just discussed contrast-
ing effects of supply-side (consumer) sale downstream, one
might be curious to know whether the type of information

'In general, the buyer set comprises (apart from Google and Facebook)
an expansive, alphabet group of companies, from lesser-known organizations
that help landlords research potential tenants or deliver marketing leads to
insurance companies, to the quiet giants of data (people search firms such as
Spokeo, ZoomInfo White Pages, etc.; credit reporting firms such as Equifax,
Experian, etc.; advertising and marketing firms such as Oracle, Innovis, etc.
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being traded downstream from the supply to the demand side
in Figure 1 has an influence on the degree of IP risks gen-
erated in the ecosystem. This question naturally arises due to
statistical correlations/dependencies that often exists between
(1) the private and public attributes of an individual record of
a database, and (ii) the individual records of a database. In
both these cases, the database refers to a collection of multi-
attribute records on app clients. Publicly known relationships
between record holders can enable us to infer information
about each of them, irrespective of their revelation preferences.
Consequently, we aim to set out, first, adopting a mutually
exclusive classification of supply side data types, and then
following up with an analysis of the degree to which each
type contributes to IP risks.

A. Research Contributions

We make the following contributions in this paper:

e We propose a consumer information trading market
model between a single seller (a data holder in Figure 1)
such as a mobile app that has in its possession aggregated
personal data of its clients (consumers), and multiple
strategic buyers (e.g., ad-networks, retailers). Our model
formally captures mutually exclusive economic types
(i.e., either being an economic substitute or an economic
complement) of consumer data being traded, the commer-
cial interests of the market stakeholders, as well as the
social interests (e.g., privacy concerns) of the clientele
of the seller. Through our model, we wish to study the
optimal management of tradeoffs between information
privacy (IP) welfare achieved in society and the com-
mercial gains leveraged by the data selling services, as a
function of the economic type of data being traded (See
Section II).

o We analyze information trading markets for two mutually
exclusive types of economic data being traded between
strategic buying firms: (i) those entailing strategically
substituting actions among buyers, and (ii) those entailing
strategically complementing actions among buyers (see
Section III for practical details). For each of these types,
we analyze market equilibria in cases when the data
seller, i.e., supplier, sells the same as well as different
quality? of (privacy-sanitized) data to the strategic buyers.
As our main result, we show that information trading mar-
kets with strategic substitutes data mostly (apart from sit-
uations when the substitutes nature between data buying
firms is weak) pose less risks for IP in society at a market
equilibrium, compared to markets where strategic buyer
actions are over complements data. The primary intuition
being (a) a section of buyers in substitutes settings are
not economically incentivized to buy consumer data from
a seller when they could (robustly) estimate such data for
free from a statistical correlation analysis of the market
environment, i.e., buyer priors, competing buyers, etc. -
expecting this behavior, the strategic seller minimizes the

2A difference in base quality can arise when a seller can sell two different
types of data packages, e.g., basic and advanced (selling data on more
attributes), on the same data it has about its cleintele, at heterogeneous prices.

correlation (thereby posing less risks of IP breaches) at
market equilibrium in its products so as to maximize the
number of buyers from the offered set, and (b) the seller,
in the strong substitutes setting, does not gain in profit
to sell data above a certain threshold fraction of strategic
buyers, and in addition is incentivized to add extra noise
to the data, enhancing chances of robust IP by making it
hard to see through correlations (See Section III).

o We analyze the state of IP in society for single seller, mul-
tiple buyer information trading markets where the buy-
ing firms incorporate purposeful information exchanges
(either via intentional free-riding channels, through paid
third party sources, or collusion between firms) between
competing buying firms to (robustly) infer the quality of
consumer data floating in the market before they take
their action. Under public knowledge of this assumption,
in the substitutes settings, our analysis results in the
finding (similar to those in Section III) that at a market
equilibrium a profit-minded data seller is incentivized
economically to (a) not offer to sell data to all possible
buyers - but maximize the number of buyers in the offered
set to actually buy data post offer, and (b) sell less
precise consumer data to the chosen buyers compared
to the preciseness in the case when there is assumed to
be no information exchange between buying firms, so
as to make a downstream firm’s task difficult to estimate
consumer data from inter-firm correlations. Consequently,
the risk of IP breaches will be reduced (see Section IV).

II. INFORMATION TRADING MODEL

In this section, we describe our information trading model
(based on [2])° between a single downstream seller of aggre-
gate cleintele data and multiple downstream strategic buyers,
aligned with the ecosystem illustrated in Figure 1. Throughout
this paper we use the terms ‘seller’ and ‘data holder’ (DH) (See
Figure 1) interchangeably. We organize this section in four
parts. First, we provide a qualitative overview of the mobile
app ecosystem. Second, we model the data seller. Third, we
model the strategic buyers. Finally, we model the competitive
trading game between the DH and the downstream buyers.

A. Qualitative Overview of the Ecosystem

We provide an exemplified overview of our proposed ad-
ecosystem shown in Figure 1 using mobile e-commerce appli-
cations as a representative example. Consumer apps from e-
commerce websites hold, i.e., collect data/information of their
clients that include contact details (phone), demographics (ZIP
code), do not call flags, type of product in their inventory,
etc. This data, for each client, is stored as a record of
attributes [3] in an aggregate client database hosted/owned
by the app. An ad-network, usually run by a search engine,
hosts a market-place where suppliers (the consumer apps)
sell “privacy-sanitized” versions (e.g., anonymous versions) of
their respective databases. Businesses that sell their products to
consumers via e-commerce apps form the demand side of this

3We re-use some notation for the purpose of consistency.
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market place and are interested to buy records of anonymous
consumers from the latter, that hosts a plethora of databases
from multiple consumer e-commerce apps associated with it.
The bought data by the businesses is a result of filtered search
on database attributes, and are processed and AI/ML-analyzed
[4] by the advertising/marketing wing of such businesses to
target appropriate consumers. Each ad-network is a market-
place that matches business ads with apps who show the
former to their customers/clients. The matching decisions are
a function of (a) quality (the number of attributes per record
along with the degree of privacy-preserving perturbation on
these attributes) of consumer data requested by businesses, (b)
quantity (number of such records) bought, and (c) price-bids
per record forwarded by the businesses to the market place.

B. Modeling the Data Seller

We consider a data seller (e.g., mobile app) having access
to aggregate consumer data from its client base. This data,
parts of it that is assumed to be private, could be a database.
As popular practical examples, the firm BookYourData (BYD)
offers downstream buyers ready-made lists of contacts of
business individuals across different industries, job titles, job
functions, and job levels. A record in a list consists of contact
information such as name, email address, job function, job
department, country etc. The organization SalesLead (SL)
maintains a variety of datasets of American businesses in
the form of profession-based lists and state/province-based
lists - the Accountant Sales Leads dataset contains records
of US-based accountants, whereas the Alabama Sales Leads
dataset contains records of different businesses (accountants,
real-estate agents, etc.) based in Alabama. Each record in a
dataset consists of contact information such as mailing address,
geo-location, email address, phone number, etc. As another
major example, the telemarketing company 7TelephoneLists
specializes in offering its buyers phone lists as datasets that
consists of information on consumers (contact details, demo-
graphics, etc.) as well as businesses (number of employees,
sales, volume, etc.) in the US and Canada.

We assume that the seller has access to a private signal z
of its client database # with an accuracy level characterized
by x,. The database under consideration could consist solely
of private or public consumer attributes, or even a mix. We
note that our analysis is also applicable to signals that do not
have a structure of a database. Without loss of generality we
consider a database signal in this paper. Mathematically, the
relation between z, 0, and . can be represented as:

2= 04 ¢, Cm N, D),
K

z

where N(0, »le) is the imprecision level or the noise term
associated with 6, and is assumed to be normally distributed®.
Note that the noise is applied on all applicable attributes across
all records. This imprecision can arise due to the unavailability,
vagueness, or falsity of certain attribute information in the

database due to voluntary choice measures taken by a subset

4For the purpose of analysis and tractability, we assume that all attributes
in the dataset can be noisified using continuous statistical distributions.

of clients to release correct information. Note here that z = 6
is assumed to be the ground truth state (i.e., a state without any
ambiguity, unavailability, or falsity) of the database and may or
may not be accessible to the seller. To this end, we assume that
0 is perceived to the seller as a random variable z with finite
support and taking a continuous statistical distribution of the
different possible ground truth states. Thus far, we have also
assumed that the utility of the entire database is isomorphic
to the utility of each entry in the database, i.e., assuming that
statistical noise is the only quality-hit on entries of bought
records, each entry has the same utility to the buyer as the
entire database (under the assumption of no missing entries
and that the buyer has access to either all his records or none
of them) as all entries take noise from the same distribution.
Our choice of using a normal distribution to model database
imprecision arises out of (a) the need to apply the central
limit theorem on the database attributes for a significant client
population, (b) the necessity of analytical tractability, and (c)
the popularity of the Gaussian distribution as a practical noise
generation mechanism in information-theoretic modeling.

Given access to client database signal z, the seller has
control over who to sell/offer z to and at what precision. More
specifically, for a given 7 € I, the seller decides to offer a
signal s; of its client database to buyer ¢ that is mathematically
represented as:

5= 26 E~ N0, ),
3

where N(0, ,.Tlg) is the noise term associated with z, and is
assumed to be normally distributed similar to the motivation
behind modeling z. We assume that &; (controlled by the
seller/DH and heterogeneous among the buyers) is independent
of z and denotes the degree of privacy sanitization to signal
z obtained after applying privacy preserving technologies
(e.g., differential privacy to preserve anonymity, information-
theoretic privacy to preserve privacy of sensitive attributes -
not necessarily anonymity) to it. Thus, more (less) the value
of &;, greater (lesser) the privacy (utility) of z to buyer i. The
DH sells s; to ¢ at a price of p;. The noise term added by
the DH/seller may or may not be correlated among different
buying firms. We model the pairwise correlation between
database signal of buying firms ¢ and j as the maximal
correlation[5], pe € [0,1], between the noise elements of
signals for ¢ and j. The motivation to use this correlation
measure is to account for non-linear dependencies between
the noise elements that cannot be captured through popular
measures such as the popular Pearson or Kendall correlation
measures. Signal noise elements that are non-correlated are
statistically independent. Thus, in terms of the ground truth 6
of client information, s; can be expressed as:

1
s; =0 +mn;, n; ~N(0, ;)7 C(ni,nj) = p,

S

where k, = (L + L

= = )~1 is the precision level of s; and
Clninj) =

% is the intraclass correlation[6]° (ICC)
5The correlation here is between two classes of noise, one coming from ¢
and the other from the £’s.)
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TABLE I: Table of Important Notations

0 true realization of client database

¢ noise level associated with 0

z data seller’s realization of 6

Kz accuracy level of signal 6

Si client signal offered for sale to buyer ¢

& noise level associated with s;

K¢ precision level of signal z

Pe pairwise MC matrix between signals of buyers

p ICC between noise elements of signals of buyers %, j
Ks precision level of s;

v(a;) utility of taking action a; by buyer i

A fraction of buyer population offered a selling contract
z; prior estimate of s; by buyer ¢

Ko precision level of x;

I8 payoft/profit function for data seller

II expected profit made by the data seller

B degree of strategic complementarity

ap, a1, a2,y  model constants

between noise elements of database signals for buying firms ¢
and 7.We also have that the signals sold by the seller cannot be
more precise than what she gathers from its clients, i.e., ks <
k.. This evidently follows because the seller will usually add
some noise on top of z before selling s. In the best case z = s,
i.e., no noise added to z, and we will have k5 = k. Finally, we
assume that the seller pre-decides at market equilibrium which
buying firms to offer consumer data to after which data trading
is done between the seller and the buyers to potentially arrive
at a market equilibrium. Note that, due to ex-ante symmetry,
this scenario is isomorphic to the case when the seller pre-
announces at market equilibrium its price and quality of data
it is going to offer to individual buyers, after which trading is
done to arrive at an equilibrium setting of buyers who decide
to buy and those opting out.

C. Modeling the Buying Organizations

We consider a continuum of buying firms indexed by
i € [0, 1] for two particular reasons: (i) there could be many®
buying organizations having market power ranging from small
to big, and (ii) working with a continuous mass of firms given a
potentially large number of them appropriately calls for a non-
discrete analysis w.r.t. the number of firms, though it makes
the analysis relatively more challenging and complete when
compared to a discrete setting.

On a broader intuitive level, a buying firm’s profit function
should ideally comprise three components: the first component
should indicate the individual benefit to buyer ¢ on buying
data related to 6 with a particular degree of precision. The
second component should indicate the individual benefit to
buyer ¢ conditioned on the aggregate action of all buyers -
a higher benefit (due to positive externality) being accrued
if competitors invest in high quality/precision data (as better
inferences can be made from competitor data with lesser
investments). The third and last component should indicate
the cost incurred by buyer ¢ to adopt strategy a; - usually a
quadratic function in many economic settings.

6 According to a new Vermont law, data brokers are required to register with
the Secretary of state - according to them there are roughly 121 small brokers
just in the USA as a conservative estimate. Source - FastCompany.com

The cost function, i.e., the third component, according to
traditional modeling practices in micro-economic theory [7],
should ideally obey regularity conditions the cost function
must satisfy the following regularity conditions: continuity,
symmetry, linear homogeneity in prices, monotonicity in prices
and outputs, and concavity in prices. In addition, the cost func-
tion should be of a flexible functional form that can be used
to approximate any twice-differentiable cost function that may
result empirically. The trans-logarithmic and quadratic cost
functions are two function types that satisfy these conditions.
Flexibility notwithstanding, the trans-logarithmic functional
form has a major limitation - its inability to deal with zero
levels of outputs that is a theoretical/pathological possibility
in our model setting. The quadratic cost model specification
offers a better alternative in this regard - exhibiting the
flexibility of the translog function while conforming to the
properties of economic theory.

More formally, each buying firm ¢ takes an action a; € R
to maximize its profit that is mathematically expressed as:

Qa2

m(as, A,0) = agv(ai)u(9) + arv(ai)o(4) — Fo(a)®, (1)
where A = fol a;di denotes the aggregate of individual

actions a; taken by the buying firms, and {ag, a1, a9} are
exogenously given constants. Here, action a; in practice might
reflect (a) the degree of precision of the data bought, with
a higher precision implying lesser noise perturbation and
vice-versa, or (b) price at which per unit of information is
bought, with higher prices indicating less noisy data and
vice-versa. Both (a) and (b) generalize the popular Bertrand
and Cournot market competition structures prevalent in main-
stream microeconomics to trade goods (in our case digital
information). Consequently, the action of a buyer is influenced
by the weighted sum of its estimated prior of the ground
truth (denoted by #), and current signal from the seller that
results in an updated degree of signal precision for the buyer.
This update is made post the move by the seller, and dictates
the actual action for the buyer. Action variables can also be
non-scalar (e.g., privacy-related supply functions [1][8][9])
that indicate mathematical functions that specify monotonic
preferences on a;, instead of a single value - with higher
preferences less noisy data. Such action spaces are important
to reach approximately optimal trading market outcomes when
it is not possible to arrive at optimal ones. However, for
simplicity purposes, we do not consider such action spaces
in this work. u(f) € R is a random variable representing the
utility function to the buyer of a probabilistic-ally uncertain
(only to a buyer) ground truth state. i.e., the original database
at the seller’s disposal, of the consumer database and taking the
same statistical distribution as 6. In practice, a buyer will not
have access to the ground truth (due to privacy perturbations
by the seller pre-sale), but will have a probabilistic belief about
the same, and consequently its utility will be driven by this
belief and hence a r.v. v(-) € R is a utility function to the
buyer of the strategic action it takes, and v(A) = fol v(a;)di.
Here, we assume for analytical simplicity and tractability
purposes that (a) u’s and v’s are the same for all firms, and
(b) v(A) is linearly separable in a; as just shown through the
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expression for v(A). In addition, the linearly separable form
of v(A) is one of the feasible ways to capture the practical
notion behind v(A). Referring back to strategy variable a;
per buyer (after it decides to opt in or opt out of trade with
the data seller), we model it in our paper to be the precision
of bought data/signal that is expressed as an appropriately
weighted linear combination of signal precision regarding 6
(see Section III for details).

We assume, partly for simplicity, that all buying firms hold
a proper uniform distribution’ to be the common prior on 6
to reflect the situation that buyers have no bias on particular
states of . However, With respect to s; sold by the seller to
firm ¢, we assume the latter has access to a (non-uniform) prior
version of s; in the form of z; that is mathematically expressed
via the following z; = 6 + €;, ¢ ~ N(O,é), where K
denotes the precision of the prior version of the data signal s;
sold by the seller, as observed by i prior to trading. In practice,
such priors can be arrived at through market study of related
published consumer information from similar businesses. We
assume that ¢;’s are independent across the firms.

Given the profit function of firm ¢ in Equation 1, we let

9?r
0adA ai

p=-0224 _ = 2
a2

be the degree of strategic complementarity in firm ¢’s actions.
The case when 3 > 0 corresponds to the scenario when
the buying firms’ actions are strategic complements, i.e., the
higher the actions (i.e., precision of bought signal) of other
firms are, higher is the benefit to firm ¢ to buy a signal of higher
precision [reflected in the second component of Equation
1]. In practice this complementarity may arise when the
seller’s information (e.g., some personal consumer attributes
important for profitable targeted advertising and which cannot
be obtained/ robustly estimated without pay from the market
environment) is important enough for the interests of a buying
firm’s profit motives and improvement in market share/power,
and thus it is incentivized to invest in such information when
other competitors do. A popular example of such information
is Fitbit data which is in high demand by market competitors
keen to take advantage alongside their strategic partners.

In a similar fashion the case when 3 < 0 corresponds
to the scenario when the buying firms’ actions are strategic
substitutes, i.e., the benefit to firm ¢ of taking a higher
action (i.e., precision of bought signal) decreases with the
aggregate action A [also reflected in the second component
of Equation 1]. In practice this substitutes characteristic may
arise when the seller’s information (e.g., either some personal
consumer attributes or public attributes, estimates of both
which could possibly be gathered from the market environment
(cheaply through second or third party sources) without buying
from the seller) is not necessary enough for the buyer side
to pay and contribute to its interests of increasing market
share/power. Consequently, due to high positive externalities
from competitor acquired data that arise through statistical

7Suppose that 6 i distributed according to a Gaussian distribution with mean
0 and variance og. By letting o9 — oo, we obtain a statistical distribution
with full support over (—oo, co) that, in the limit, assign the same probability
to all intervals with the same Lebesgue measure.

correlations, a buyer is not incentivized to invest in such
information when other competitors might. An example of
such information is data gathered for free by Google/Facebook
when we login to a website using the former’s social account.
The case when 5 = 0 corresponds to the scenario in which
buying firms face no strategic interactions (the domain of non-
replacable data of no/less commercial use). We also assume
that as > max{2ay,0} which makes § lie in the interval
(—o0, %) in order to guarantee that buying firm ¢’s profits are
strictly concave in a; so as to reflect the property of decreasing
marginal returns.

D. Modeling The Information Trading Game

Once the seller and individual strategic buyers have their
own prior estimates z and x;’s of 6 respectively, the former
opts to sell s;’s to the buyers. Consequently, the goal of the
seller is to advertise a ‘take-it-or-leave-it” offer (k¢, pe,p;) to
the fraction A of buying firms. The buying firms i € [0, A]
observe the advertised contract and have the freedom to decide
whether to accept (b; = 1) the contract or to reject (b; =
0) it. After the decision taken by each of the buyers, there
is the trading competition subgame in which each strategic
buyer chooses their action a; to maximize their profit function.
Taking into account the rational mindset of the selfish buyers
to choose the optimal action on being offered a contract, that
maximizes their payoffs, the rational seller designs the optimal
contract offer. Thus, we have a dynamic game setting, like in
[2]. Note that while buying firm ¢ opting in needs to map
(x4, 8;) to a;, a buyer i opting out needs to map x; to a;.

In theory, the information trading ecosystem desires a
stable/equilibrium operating state where (i) the seller chooses
parameters (A, ke, pe, {Pi }icjo,)> (i) each data buyer makes
acceptance/rejection decisions b; € {0,1}, (iii) a posterior
belief p; on 6 is evaluated by each strategic firm 4, and (iv)
action a; is taken by each buyer ¢ such that the following
conditions hold:

1) the seller chooses (A, ke, pe, {Pi}ie[o,n]) to maximize its

own profit;

2) each firm ¢ accepts the seller’s offer if doing so maxi-

mizes its profit;

3) for each firm ¢, the p; posterior estimate of # is obtained

via the Bayes rule conditioned on the information set;

4) given its posterior belief, each firm ¢ maximizes expected

payoffs in the competition subgame, taking the strategies
of all other firms as given;

5) the aggregate action A is consistent with individual firm-

level actions.
The operating state that satisfies the above five conditions is
popularly known to be a perfect Bayesian equilibrium state in
game theory, derived as the outcome of a dynamic Bayesian
game of incomplete information [7].

III. MARKET ANALYSES

In this section, we analyze different variations of infor-
mation trading markets in view of our proposed market
trading model of Section II. More specifically, we (i) state
the practical relevance of market variations and for each, (ii)
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mathematically characterize the seller’s optimal strategy to
individual strategic buyers, and (iii) lay down the commercial
and societal implications of information trading at market
equilibria. To this end, we structure the section in three parts.
In the first and second part we analyse the competition game
between buying firms once the seller has decided the fraction
of buyers to whom to offer a contract to, and then derive
market equilibrium of the resulting competition - depending
on the economic type of the data being traded (see Sections
III-A and II-B, respectively). In the third part, we extend
this analysis for seller products having quality gradations, in
contrast to the case of homogeneous quality trading analysed
in Section III-A.

Prior to delving into the details of the three parts aforemen-
tioned, we would like to emphasize that the games entailed
by the oligopoly are not finite games, i.e., the strategy space
consists of real numbers. Thus, the existence of a mixed-
strategy market Nash equilibrium cannot be guaranteed via the
seminal Nash’s theorem [10] - however, both a pure strategy
market Nash and a mixed-strategy Nash can be shown to exist
via a theorem proposed by Glicksberg [I1], and a theorem
proposed by Fan, Debreu, and Glicksberg [12], respectively,
both of which does not restrict the condition of equilibrium
existence to finite strategy spaces. In our work, we will
evaluate the more practically viable pure strategy market Nash
equilibrium of our oligopoly game structures.

A. Buying Oligopoly Game - Buying Firm Strategy

Consider the situation where the data seller has already
decided to offer contracts to a fraction A (the strategy behind
selection of the optimal ) is discussed in Section III.B) of the
buyers, and that a fraction [ < A of buyers eventually opt in.
The primary question of interest here is: what is the optimal
strategy for the strategic buying firms?. Before we answer this
question, it makes sense to explain the meaning of strategy
for a buying firm.

The Strategy for a Buying Firm - Each buying firm ¢ has
access to a private prior x; of 6, and is sold s; (if it opts in)
by the seller. x; is generally obtained from second or third
party sources, either for free or at a price much lesser than
what it needs to pay for s;. Each firm who is offered s; either
(a) operates with x; (and its posteriors) without buying s;, (b)
buys s; and disregards x; showing no confidence in its private
prior, or (c) effectively combines x; and s; showing a share
of confidence in both its private prior and paid signal. The
strategic decision firm ¢ needs to make encompassing (a), (b),
and (c) above is: how much weight to put on x; as compared
to s;?. The weighted combination of z; and s; subsequently
acts as the action a; for each buyer i. The answer to the
previous question depends on the precision levels (quantity)
of x; and s;, in addition to [ - the number of buying firms
opting in the contracts offered by the buyer, and p the pairwise
ICC correlation matrix. [ contributes to the importance of the
data under trade to buyers, whereas p reflects the similarity of
bought data among the firms. We have the following result,
based on [2] characterizing the equilibrium actions of the
strategic buyers, the proof of which is in the Appendix [13].

Theorem 3.1: The buying oligopoly game has a unique
Bayesian Nash equilibrium. The market equilibrium strategic
actions of each buying firm (assuming they opt for a linear
combination of their private prior and bought signals) is given

by:
(A = w)zs +wsi], ifi € [0,1]
@i = ~yag, i € [1,1],
where w = m and v = —2o—,

a2 —Q

Theorem Implications and Intuition - The theorem states
that at market equilibrium, firm ¢ puts a weight split of w
and 1 — w to the private prior and bought signal respectively,
where w is a function of [ and p. Importantly, the weight firm
i assigns to s;, irrespective of p and [, increases with 3 -
the degree of strategic complementarity. The intuition behind
this result is that buying firms have a significant incentive to
implicitly but non-cooperatively coordinate with one another
(via a market ‘eye’ on other firms) with increasing 3. This
is simply because higher 8 indicates consumer information is
commercially useful/vital enough (e.g., cyber-hygiene parame-
ters of insurance clients) but not comparably ‘easy’ to publicly
estimate (via inputs from third party sources) in a robust fash-
ion. Thereby, each firm wants to invest and put more weight
on bought data when compared to their “not so informative”
priors, and improve their business/advertising prospects in
order to increase market power/share. In the situation when
£ = 0, the optimal strategy of buying firms is only dependent
on the precision metrics k, and kg, of the prior and bought
signal respectively, and independent of [ and p. This is intuitive
given that without any complementarity (or substitutability)
effect, it does not matter how many competitors buy data
from the seller, or the strength of ICC between sold signals.
Now keeping S fixed, we observe that the weights assigned
to bought signals is monotonic in [ and p. More specifically
when 8 > 0 (the complementarity case), the weights increase
in [ and p - since as discussed above, complementarity along
with increasing [ commercially incentivizes firms to invest in
bought signals. The weights also increase in p, i.e., correlation
among firms; this might seem counter-intuitive but is perfectly
justified in the context of 5 > 0 scenarios where firms find it
incentive compatible to invest in the more informative bought
data than rely on correlated data ‘floating’ around. A similar
converse argument holds when 5 < 0 (the substitutes case),
and we omit it for purposes of brevity.

B. Buying Oligopoly Game - Selling Firm Strategy

In this section, we discuss the strategy of the selling firm at
a market equilibrium point. More specifically, we investigate at
the unique market equilibrium (established in Section III-A),
the quality of consumer data sold, and the fraction to whom a
selling offer is made. In addition, we discuss the practical
social implications of our analysis with respect to privacy
welfare in society. We consider the scenarios of data being
strategic complements as well as being strategic substitutes.
Moreover, the analysis in this section is built upon framework
in [2], and based on the assumption that the sellers are
unaffected about privacy concerns of its consumers. i.e., are
not subject to considerable regulatory fines - something quite
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common to many mobile app firm businesses around the world
today. We relax this assumption in Section IV to account for
the case when data sellers do consider privacy breach impacts
to their business prospects - something consumer data selling
firms might have to think of in the near future, especially in
the wake of heavy fines to be exercised (or already in fashion)
on firms in the wake of policies such as the GDPR.

1) The Case of Strategic Complements: In the case when
B > 0, i.e., the selling data exhibit strategic complementarities
among the buying firms, we have the following result, the
proof of which is in the Appendix [13].

Theorem 3.2: At the unique Bayesian Nash equilibrium of
the buying oligopoly game with 5 > 0, the optimal strategy
for a data seller is to sell an undistorted version of consumer
data, K = K, to its downstream buyers and offer this contract
to the entire set of the firm population, i.e., \* = 1. In return,
the seller makes an expected profit of

Kz + Ky

A (s

2Ky

Theorem Intuition and Practical Implications - The result
simply states that at trade/market equilibrium, the data seller
should offer to sell z to all buying firms in the pool without
adding further statistical perturbations for privacy-preserving
interests. Clearly, from the seller side, the result is intuitive
given the fact that there is no regulatory liability/punishment
on the data seller to preserve privacy of consumer data,
and hence it finds it optimal to sell an unperturbed version
of the data to gain maximum profits. From the buyer side,
since data exhibit strategic complementarities, their surplus
increases after the trade with the seller. As a consequence
of the complementarity property of data sold to buyers, the
seller is further incentivized to increase their price to improve
their profit margins, as buyers find the data important for their
businesses. On the seller profit front, we observe at equilibrium
that the profit margin increases with «,, the precision of
clientele information available to the seller - the buyers find
it more useful and hence want to invest in it, and the seller
can charge appropriately. However, the profit margins also
decrease with increase in the precision, k., of the priors the
buyer population has on 6 - simply (and intuitively) because it
prevents a significant fraction of the population from buying
information from the seller.

Privacy Implications for Society - In the strategic comple-
ments trading context without sufficient regulatory penalties,
consumer privacy might be hampered if the data sold under
consideration has private attributes, as there is no incentive
for the seller to perturb z. In the case only public attributes of
consumers are under sale, the risk of breaching consumer pri-
vacy depends on the correlation between the public attributes
sold and the private attributes. Greater the correlation, greater
the risk.

2) The Case of Strategic Substitutes: In the case when 5 <
0, i.e., the selling data exhibit strategic substitutes among the
buying firms, we have the following result, the proof of which
is in the Appendix [!3].

Theorem 3.3: At the unique Bayesian Nash equilibrium of
the buying oligopoly game with 5 < 0 and —(1+Z—;) < B <0,

Qg Kz

I = 4%( 3)

the optimal strategy for a data seller is to sell an undistorted

version of consumer data, K} = K, to its downstream buyers

and offer this contract to the entire set of the firm population,

i.e., \* = 1. In return, the seller makes an expected profit of
Ky + Kg

0= e+

Theorem Intuition and Practical Implications - First, note
that 8 < 0 (see below for a formal expression) in this setting,
denotes the degree of substitutability of consumer information,
and grows on the negative scale. The result simply states that
under a weak enough substitutability of consumer data desired
by downstream buying firms, at trade/market equilibrium, the
data seller should offer to sell z to all buying firms in the pool
without adding further statistical perturbations for privacy-
preserving interests - the same result as in Theorem 3.2 of
the complements case. As above-mentioned, the intensity of
substitutability between firms is characterized by 8 = 52;51 <0
and is decreasing in § € [0, 1] (i.e., behaves increasing like
complements). Consequently, in practice, higher the value
of 4, more is the variance in the mindset of buyers to
significantly rely on market environment estimate of 6, i.e.,
the individual priors. As a result, intuitively the seller (with
increasing d) finds it profit optimal to sell the best quality
of consumer data at its disposal as buyer surplus is boosted
in the weak substitutes case. On the seller profit front, we
observe at equilibrium that the profit margin is lower in the
weak substitutes case (due to a higher value of 1 — 3), when
compared to the complements case. This is due to the fact
that in the weak substitutes case, buying firms have significant
variance in the weights they allocate to the bought signal and
their prior, unlike in the complements case where the variance
is not as much. The variation of seller profit margin II* at
trade equilibrium with x, and k, follows similar trends as in
the complements case and follows a similar intuition.
Privacy Implications for Society - We just showed that the
case for weak substitutes is similar to that of complements.
The privacy implications are similar. i.e., without sufficient
regulatory penalties, consumer privacy might be hampered if
the data sold under consideration has private attributes, as there
is no incentive for the seller to perturb z. In the case only
public attributes under sale, the risk of breaching consumer
privacy is positively monotonic with the correlation between
the private and public attributes of consumer data.

For the substitutes case when 3 < —(1+ =), we have the
following result, the proof of which is in the Appendix [13].

Theorem 3.4: At the unique Bayesian Nash equilibrium of
the oligopoly game with < —(1+ :—j), the optimal strategy
for a consumer data seller is to sell a distorted version of
consumer data, k; < Kk, to its downstream buyers and/or
offer this contract to a proper fraction of the firm population,
i.e., \* < 1. More specifically, the value of Kk and \* is given
by the solution of the following equation:

(€5) Rz

" = 5*(5

“4)

KRa

(k2 + BANKS) Ky + K2k: = 0. (5)
In return, the seller makes an expected profit of
a9 K
IT* = —%(— . 6
(P g5 ©)
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Theorem Intuition and Practical Implications - The re-
sult simply states that under a strong enough substitutability
of consumer data desired by downstream buying firms, at
trade/market equilibrium, the data seller should offer to sell
z to a subset of buying firms in the pool by adding further
statistical perturbations for privacy-preserving interests. This
is clear from Equation 5 which suggests that the fraction A
of buying firms that the seller offers to trade with and the
information precision level, k4, are substitutes, i.e., as the
seller prefers an increased A, it is incentivized to increasingly
distort the sold data. Intuitively, this follows because when data
are sufficient substitutes an increased A implies that the buying
firms can implicitly coordinate with competing firms in the
market, i.e., the market environment, and can robustly estimate
consumer information without buying. This is precisely what
the seller wants to discourage in order to increase sales, and
thereby the increase in noise to promote sales. If the seller
were to make K; = k,, the substitutes property of data
will make a considerable number of firms robustly estimate
consumer information without opting in a trade contract with
the seller - something not aligned with the profit interests of
the latter. On the seller profit front, we observe at equilibrium
that the profit margin decreases with |3| - the degree of the
absolute value of strategic substitutability of the actions of
buying firms. This is because a firm’s incentive to buy data
decreases with increased substitutability nature of data on the
selling market. Finally, observe that the threshold —(1 + =)
at which the seller finds it optimal to limit her market share
A and/or strategically distort the consumer information, is
decreasing in Z—Z, implying that the more informed the seller
is relative to its downstream customers, the more likely she
will able to exploit her informational advantage by selling it
to the entire firms without distortion.

Privacy Implications for Society - The privacy implications
for the strong substitutes case favor a comparatively better
“privacy-friendly” society when compared to the complements
case. This, because the sold data is distorted and devoid of
moderate to high correlations and thus it is much hard work
to breach consumer privacy. One should note here that our
notion of privacy is mainly from the point of seeing through
correlations without spending money. It is quite possible
that downstream firms do invest to not rely on correlations,
specially for important substitutes data, in which case good
quality consumer data will reach them and consumer privacy
might be under threat. However firms would now need to
pay. A regulatory action is called for here to set trade prices
to enforce the data minimization principle - only collecting
data that is necessary, beyond which it should become cost
prohibitive for buying firms.

C. The Case of Selling Differentiated Quality Downstream

In this section, we analyze the case when the data seller
provides different packages to its downstream sellers related
to its clientele information. This scenario is a practical use
case since different buying firms might often be interested in
package gradations at heterogeneous prices. As an example,
differentiation may be in terms of the type and number of

attributes sold downstream, in addition to the quality of infor-
mation traded. We emphasize here that we are in the setting
where the seller does not face a significant penalty (regulatory
or otherwise) on adverse effects of selling consumer data to
downstream buyers. Mathematically, we assume that the seller
offers (ks,,p;) to each firm ¢ € [0, 1], specifying the precision
level k5, and price p;. It is evident that x5, < & for all 7, i.e.,
the seller cannot provide the buyers with a precision level of
their clientele data that is greater than its own private estimate
z. We have the following result, based upon [2], characterizing
the market equilibrium trade parameters, the proof of which
is in the Appendix [!3].

Theorem 3.5: At the non-unique Bayesian Nash equilibrium
of the buying oligopoly game with > —(1+ :—;), the optimal
strategy for a consumer data seller is to sell an undistorted
version of consumer data, K} = K, to its downstream buyers
and offer this contract to the entire set of the firm population,
i.e., \* = 1. In return, the seller makes an expected profit of

* 2 (0%) Kz Kz + Ry
p 0 (2)(l€x)[(1_6)’§x+ﬁz]2. (7)
If < —(1+ Z—z), the optimal strategy for a consumer data
seller is to sell clientele data at a precision k7, to buying firm
i, where {K}, }ic[o,1] solves

1 *
Rg.
/ & di - e ’ (8)
0 Kz T Kst ﬁ’izc

K

Theorem Intuition and Practical Implications - The case
of B > —(1+ ;=) generalizes to the strategic complement
setting and also the substitutes setting when the substitutes are
weak (8 negative but near to zero) - seller offers the highest
precision consumer data available to the buyers. The intuition
is the same as mentioned above for these scenarios - primarily
that the ‘complements’ nature of consumer data incentivizes
both the profit minded seller, and also the strategic buyers to
trade with the highest quality data available. On a similar note,
for the case when # < —(1+1=), it is not incentive compatible
for the seller to offer the highest precision consumer data at
its disposal to downstream buyers, and that too to the entire
population of buyers. It is easy to see that x5, = r, does not
satisfy optimality condition (8), for all buyers i. The intuition
behind this result is that providing high quality data increases
the correlation in the firms’ actions, which in turn reduces their
profit when the actions are strong strategic substitutes. Thus,
the seller would be better off by limiting her market share
or reducing the quality of the clientele data at its disposal.
However, note that the optimal strategy of the seller is not
unique. Any signal {k,,} that satisfies (8) would lead to the
same expected profit. Nevertheless, irrespective of the strategy
chosen by the seller, it’s incentive to lower the precision of
consumer data increases as the buying firms’ actions become
strong substitutes. As a matter of fact when 8 — —oo - the
case of perfect substitutes, no trade takes place at equilibrium.
The seller’s optimal strategy is to sell uninformative data with
ks — 0 to all buying firms at a price p; — 0.

Privacy Implications for Society - When 3 > —(1 + =),
the information trading market behaves like one of ‘strategic

at a price p} = %(%)
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complements’ (and this includes the pure complements case
where 5 > 0) and thus without sufficient (regulatory) penal-
ties (or enforcing a data minimization principle) on adverse
effects of consumer data sale, there could be considerable
risk due to information trading when sanitized versions of
private consumer data is under sale. The privacy implications
for the case when the information trading market behaves
like one of ‘strong substitutes’, i.e., when 8 < —(1 + :—j)
favor a comparatively better “privacy-friendly” society when
compared to the complements case. This is simply because the
sold data is distorted (and distortion increases with increasing
A) and devoid of moderate to high correlations and thus it
is difficult, compared to the complements case, to breach
consumer privacy.

IV. MARKET ANALYSES WITH ADDITIONAL FEATURES

We analyze in the light of [2], single seller, multiple buyer
privacy trading markets with additional general features. More
specifically we consider two problems. First, we analyze the
state of privacy in society when single seller, multiple buyer
privacy trading markets incorporate purposeful information
exchanges (either via observing behavior of competing buyers,
through other paid third party sources, or even via collusion
and/or cooperative inference between firms) between strategic
buying firms to infer the quality of consumer data floating
in the market before it takes it action. Second, we account
for costs borne by the seller of consumer data (e.g., the
costs related to the disutility faced by consumers in the
event of a privacy breach), and also the costs borne by the
strategic buying firms (e.g., costs incurred to make sense of
the data at the disposal of the firms for further processing and
learning/mining analysis) in processing the data they buy/use.

A. Purposeful Data Collection on Competing Buying Firms

In this section, we analyze privacy trading markets where
buying firms are consciously keen to get market information
on their competitors’ data quality. In practice such information
can be obtained either via (i) observing selling price of
competing buyers obtained individually or through other paid
third party sources, (ii) collusion between firms® and/or (iii)
third-party information about the data quality possessed by
other buying firms. We assume that, in addition to prior z;,
and the bought data s;, buying firm ¢ can also condition its
action on seepage data, S; given by:

SZ‘:A+I/Z',V¢NN(O,L), (9)
Ky

where A = j;)l a;di denotes the aggregate action, and v; are
independently distributed across the buying firms. In practice,
K, acts as a proxy for the extent of information seepage in
the market as an aggregate measure, about competing firms.
S; is perfectly informative about the aggregate action A when
Ky, = 00, however as k, decreases, the preciseness of the
information content of the seepage data is reduced. In the
boundary case when x, = 0, data S; does not contain any

8 Anti-trust laws will come into action here, and thus by ‘collusion’ we
imply actions by buying firms that do not lead to lawsuits.

payoff-relevant information, and reduces to the no-seepage
setting in our model. Recall here from Section II that the
payoff function for each firm is such that it cares about the
actions of other firms only insofar as these actions impact
the aggregate action A. This implies that any setting in which
buying firm ¢ observes noisy data about other firms’ individual
actions can be mapped into an isomorphic setting in which
firm ¢ only observes a signal about the aggregate action.
To formally model each buying firm’s ability to account
for consumer data in their strategic decisions, we use the
framework introduced by Vives [14], and extend the buying
firms’ strategy space by appending S; to the strategy function
a;(-,S;) for each ¢ that maps its private (prior) and market
(bought) consumer related information, (z;,s;) to an action
that depends on the seepage data .S;. Thus, the Bayesian Nash
equilibrium of the subgame between the buying firms require
(i) each firm to choose a;(z;,s;,S;) in order to maximize
its expected profit conditional on its information set, i.e.,
E[n;|z;, si, Si], taking the strategies of all the other firms as
given; and (ii) the aggregate action needs to be consistent
with the realization of the buying firms’ individual actions,
ie, A = fol ai(x;, s;,S;)di. We have the following result
regarding the outcome for the seller and the buying firms at
market equilibria, the proof of which is in the Appendix [!3].

Theorem 4.1: At the unique Bayesian Nash equilibrium of
the buying oligopoly game, for sufficiently small k, > 0,

1) The seller’s profit decreases in the extent of data seep-
age, i.e., g% < 0; and
2) There exists —(1+ £=) < 3 < 0 such that k- < K for

all B € (—(1+ Z—),B)

Theorem Intuition and Practical Implications - The the-
orem states that regardless of whether buying firm actions
are strategic substitutes or complements, the seller’s profits
decrease as the degree of data seepage is intensified. This is
due to the fact that a firm’s willingness to pay for consumer
data reduces because they could free-ride on the information
purchased from the seller by competing firms. The higher the
degrees of seepage between firms, the seller is increasingly
incentivized to charge lower prices for the consumer data at
her disposal, thereby making lesser profits. The result also
establishes that the range of ’s for which the seller of con-
sumer information finds it optimal to distort that information,
increases in the presence of increased seepage. Recall from
Theorems 3.4 and 3.5 that with no information seepage, the
seller would decrease the quality of consumer data if and only
if < —(1+4=). In contrast, part (b) of Theorem 4.1 states
that, no matter how small the amount of seepage, the seller
would offer distorted data for some 8 > —(1 + ;=). This is
due to the fact that the seller’s ability to extract surplus from
the buying firms by increasing the precision of offered data
s; for firm ¢, is reduced in the presence of seepage - simply
because firms can free-ride instead of buying from the seller.
However, the fact that B < 0 means that, regardless of the
presence or absence of information seepage, distorting fo be
sold consumer data is not optimal when the buying firms’
actions are strategic complements.

Privacy Implications for Society - In the case of data seepage
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between firms, the satisfaction of 8 > —(1+ Z—z) does not ring
warning bells for privacy (as it did previously) even though it
includes the ‘complements’ setting - the free riding behavior of
buying firms ensures distortion of the offered consumer data as
an incentive compatible strategic action by the profit-minded
seller. This, in the case without the presence of penalties.
However, though there exists some 3 > —(1+ =) for which
free-riding ensures data distortion by the seller, thereby taking
positive steps towards preventing privacy breaches, there does
also exist a large enough set comprising 3 values in the range
[—(1 + #=),00] that entails the negative privacy effects of
markets with strategic complements. Thus, on average we can
expect purposeful data seepage between buying firms to be a
more privacy-friendly setting (regardless of complements or
substitutes), compared to no-seepage settings.

B. Accounting for Transaction and Processing Costs

So far, we have analyzed privacy trading markets in the
absence of penalties in the event of facing adverse effects
of trading consumer data. In this section, we model various
costs that are accrued by both the supply and the demand side
in a privacy trading market. More specifically, we consider
costs accrued by (a) the data seller in releasing clientele data
to buying firms, including costs to address potential post
transaction privacy breaches that might occur due to the trade,
and (b) the processing costs that buying firms undertake with
the data they buy from the seller. We note here that apart from
the costs to address privacy concerns, the data seller (mobile
apps) can face, as part of transaction costs, unpopularity costs
related to their clients experiencing delay and high cellular
bandwidth costs in loading these sites.

From a data buyer perspective, we assume that the buying
firms face a processing cost that is quadratic in the quantity of
utility garnered by a firm through its action. Mathematically,
we represent a buying firm ¢’s profit accounting for the
processing cost as follows:

m(a;, A,0) = agv(a;)u(0) + av(a;)v(A) — %civ(ai)2, (10)

where ¢; > 0 is the cost accrued by the buying firm per unit
of utility, A is the aggregate action in the market taken by
the buying firms, and ag, 7 < 0 are constants. In practice,
the processing costs are incurred by the data buyers to make
sense of the data at the disposal of the firms for further
processing and learning/mining analysis in processing the data
they buy/use. Note the subtle difference between Equations (1)
and (10) - the addition of the c¢; parameter per unit of utility
in the cost function in (10). In (1), we had assumed a unit
cost for ¢; homogeneously across all buyers indicating the
same technology for data processing. In (10), we relax this
assumption to model the more realistic case of relative (w.r.t.
1) heterogeneous costs to process bought data using varying
technologies that are deployed by the firms.

We assume that the data seller incurs a transaction cost that
equals v- ks, whenever it sells consumer data of precision &, ,
where v is the constant (for the purpose of simplicity) cost
per unit of precision offered by the data seller to the buyers.
In practice, this transaction cost can imply four cost aspects:
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(i) the cost to offer verifiable and credible (appropriately
distorted) consumer data to the buyers, (ii) the cost to cover
premiums payable to cyber-insurance providers in the event of
data breaches occur and consumers hold the data seller liable,
(iii) the cost to customize consumer information to meet buyer
needs, and (iv) facing consumer dissatisfaction with respect to
slow and bandwidth consuming ad-embedded seller app. We
have the following result, based upon [2], regarding the case
involving transaction and processing costs, the proof of which
is in the Appendix [13].

Theorem 4.2: At the non-unique Bayesian Nash equilibrium

of the buying oligopoly game, there exist v > v such that

1) if v > v, the data seller does not find it incentive
compatible to trade with any downstream buying firm,
Le., n;‘i =0, for all 1.

2) if v < v, the seller finds it incentive compatible to
offer selling consumer data without any distortion to
the entire population of buying firms.

3) for any v € (v,0), there exists a ¢* such that

0, ife; > c*
2
1 . Ka *
Ky, ifc; < C=rm

c*

= — 1), otherwise

Ko (

Theorem Intuition and Practical Implications - We first
note that v is the cost borne by the seller per-unit of precision
offered to the buyers. Thus, higher the precision, i.e., quality,
more the transaction costs. The theorem states that regardless
of whether buying firm actions are strategic substitutes or
complements, the seller finds its optimal to offer its buyers
consumer data at a precision level that is decreasing in cost c¢;
- implying that firms having lesser processing cost per utility of
consumer data get offered higher quality data. In addition, the
seller’s offered precision 7, at a market equilibrium is always
non-increasing in ¢;, for any buying firm ¢. This however does
not imply that for a buying firm accruing a processing cost of
zero, the seller is going to sell the latter an undistorted version
of consumer data. More specifically, v reduces with reduced
c; and as long as the former is non-negative and per-unit
precision cost v > v to the seller less than v, the seller finds
it incentive compatible to sell increased precision signals with
decreased c;, for any buying firm ¢ - the boundary case arising
if v < v in which case the seller finds it incentive compatible
to sell distortion-free data. The intuition here is that the interval
(v, 7) denotes the zone where the seller gets enough business
revenue via quality data (not necessarily undistorted) sold, at
the same time does not need to sell enough contracts so as to
incur costs of privacy risks characterized by v. This situation
can arise for consumer data driven services that do not run high
enough privacy risks (e.g., entertainment apps). However, if the
costs of privacy are high enough, i.e., v > v, the seller does not
sell at all. This situation can arise for services characterized
by highly privacy-sensitive data (e.g., medical and health data)
that can be estimated relatively easily by downstream buyers
from each other or through the environment. Furthermore,
v < 0 implies

Kz

14 -——=
Kz

1
—di < ——(

|
0 aq

Ci

);
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which is identical to the condition of Theorem 3.4 that did
considered equal costs incurred by the buyers.

Privacy Implications for Society - The privacy implications
for this theorem are quite similar to those of Theorems 3.4
and 3.5, overall. Thus, even in the presence of transaction and
processing costs accrued by the seller and buyers, respectively,
strategic complement settings increase privacy risks in society,
where substitutes settings reduce privacy risks. The differences
lie in the thresholds at which the risks aggravate or alleviate.
These thresholds are driven by the parameters in Theorem
4.2 - those that consequently drive the seller to offer and sell
consumer data at various quality and quantities.

V. TRACE-DRIVEN MARKETS EVALUATION

In this section, we conduct a trace-driven market evaluation
of our model. We numerically study the tradeoffs at market
equilibrium between the profit earned by a seller, the data
quality being channeled downstream to the buyers, and infor-
mation privacy risks posed in society. In addition, we study,
using a standard gradient descent approach, the convergence
speed our oligopolistic market model to market equilibria, in
a distributed fashion.

A. Trace-Driven Real-World Evaluation Setup

The Environment Setting - We collect name-sanitized (to
preserve anonymity) consumer data for 1000 clients on their
two sleep patterns (i.e., time to go to sleep, hours of sleep)
from a fitness app startup firm (representing the data seller)
based in northern California, USA. For policy considerations,
the data for the clients are scaled proportionally by the startup
firm before our collection to prevent us from experimenting
with real personal data. For the aggregate data collected from
the company, we set up three independent (of the firm) sleep
expert representatives, A, B, and C from a medical department
at an university in northern California to act as competing ad-
networks. The experts have at least ten years of experience in
research and consulting, and more importantly possesses deep
knowledge of what type of sleep data would be of interest to
different commercial organizations (representing advertisers in
the supply chain) in the fitness and pharmaceutical industries.
Having collected real-world data, as a mock experiment, we
synthetically implement a triopoly downstream competition
between A, B, and C as buyers of sanitized client data.

The Parameter Settings - Without loss of generality, we
assume v and as to take a value of 1. In this regard, note
that no matter what the value of as, ag and «; can be
scaled accordingly. A similar logic follows the selection of
a ~ value for the purpose of simulation. We fix x, (the
precision parameter of the prior of consumer data visible
to a buying firm) equal to 1 and vary k, (the precision
parameter of consumer data at the disposal of the selling
firm) to take values of 2, 3, and 4. In addition, we vary the
degree of strategic substitutability, S from O (non-strategic)
to -20 (a high degree of substitutability) in intervals. Note
here that the modulus of the negative 3 values would reflect
the strategic complement property of sold data. For the case
when purposeful information transfer related to consumer data
happens between the buying firms, we vary k, (the proxy
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Variation of M at MNE with B values

10

B=-20 B=-10 B=-5 p=-3 Pp=-2

—— =) ey =3

Fig. 2: Seller profit (units) variation with 3 at the MNE

parameter for the degree of information leakage) from 0 (no
leakage) to 10 (high leakage) in intervals. The scalar utility
value to a buying firm for a given instance of a consumer data
matrix offered by the seller is derived using a linear map, i.e.,
the trace of the matrix, to a scalar value.

Evaluation Objectives (EOs) - We evaluate the following
objectives in this paper for information trading market settings:

1) The variation of x} (offered data quality) and \* (quan-
tity of contracts offered) at Nash equilibria with 3.
The variation of the market Nash equilibria profit of the
seller with the intensity of market competition (governed
by ) between buying firms.

The variation of the seller profit ratio (ratio of profit with
and without data distortion) at market Nash equilibria
with f.

The variation of k% and A\* at market Nash equilibria
with £, at different degrees of purposeful consumer data
related information transfer between the buying firms.
The variation of the market Nash equilibria profit of the
seller with the intensity of competition governed by [,
at different degrees of purposeful information transfer
between the buying firms.

The pairwise correlation of consumer data quality
bought by the buying firms at market Nash equilibria,
reflecting the extent of information privacy breach risks.
The convergence speed to market equilibria, in terms of
the number of iterations, of our market mechanisms.

2)

3)

4)

5)

6)

7

B. Evaluation Analysis

We observe from Figure 3, that plots EO1, that the offered
data quality at market equilibrium, denoted via s} increases
with a reduction in the degree of strategic substitutes (denoted
by p) and converges to x, at threshold values of 3. A
similar trend can be associated with the amount of contracts
offered by the data seller at a market Nash equilibrium -
the entire population being offered at threshold values of .
In addition, with increased k. values, i.e., reduced precision
of the base quality acquired by the data seller, at a market
Nash equilibrium (MNE) k4 and A\ values increase relative
to those where x, values are lower. The rationale for this
trend being that the seller finds it economically incentive
compatible to offer relatively higher quality consumer data
for sale to an increased fraction of buyer population, as its
acquired precision levels of clientele data drop. Even as a
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Variation of K ;at MNE with
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Fig. 3: Seller offered quality (left) and quantity (right) variation with 8 at Market Nash Equilibrium (MNE)

behavioral justification this makes sense as one (the seller)
would want to make up for market reputation reasons, its
lack of availability of high quality client data. With respect to
EO2, we observe from Figure 2 that the MNE profit (in units
of profit) of the seller increase (upto approximately 20 fold
based on our model) with an increase in 3 - also an indicator
of market competition. This trend arises as with increase in
market competition, the seller opens up on its selling range
and quality of data offered to cover the entire buying base. In
addition, similar to EO1, with increased «, values, at an MNE,
seller profit values increase - precisely for the same reason as
that in EOL1.

Figure 5 plots trends for EO3 where we compare the ratio
of seller profit when it distorts data before selling in contrast
to the situation when it does not - both with respect to the non-
strategic case, i.e., when § = 0. It is evident that with zero
stga/lt%gic substitutes nature of the data sold, the ratio is 1 (for
—£=0 °g) as there is no data distortion for 3 > 0. For 3 values
less than O (the case of less market competition and increasing
substitutes nature of offered data), the ratio decreases due to
lesser population being offered a sale at MNE, and that too at

ne_,

reduced data quality. The increase in profit between the —
0

d
e,

and T, cases being higher when the market competition
is lower and substitutes property of offered data is higher -
in our case approximately leading to a 100% improvement
when 8 = —20. Moreover, similar to that in EO1 and EO2,
with increased k. values, at an MNE, seller profit ratio values
increase - for the same reason at those in EO1 and EO2.

In Figures 6 and 7, we plot trends pertaining to EO4 and
EOS5, respectively. We observe that with increase in the degree
of information transfer between buying firms, indicated via &,
values, ks, A, and II values decrease with increasing «,. The
rationale for this trend being that transfer of information does
not make it economically incentive compatible for the selling
to improve the quality and quantity (hence profit) of offered
clientele data downstream to competing buyers - the extent of
the drop approximately being (model based) upto 100% (in
Ks), 40% (in A), and 100% (in profit IT) at an MNE.

Figure 8 pertains to EO6 and represents the pairwise cor-
relation, C'(n;,n;), in the data offered by the seller to the
downstream buying firms. This correlation measure (equivalent
to mutual information (MI) [15][5]) is a reflection of the
information privacy (IP) risks in an information theoretic sense
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[16], posed in society due to trading personal information of
consumers - higher the correlation, greater the risk of an IP
breach between competing firms and personal data percolating
deep down in the supply chain without the intent or consent
of the consumer base. We plot C(n;,n;) 'ﬁipfﬁ'zz - the
pairwise correlation measure (see Section II) at the MNE for
different ranges of 3 values. Here p¢ is computed using the
standard distance correlation (dcor) correlation metric [17]
that accounts for non-linear dependencies between random
variables. We observe that as 3 decreases, so does the value of
C(-,-) at MNE and that too at a rapid rate (that of increasing
marginals) - indicating much reduced risks of IP breach events
on decreased market competition and increased substitutes
nature of traded data. The correlation value is 1 when 8 > 0,
because highest quality data is offered to the entire population
of buyers, and suEsE:guentl}/( pose the §r3eatest risk to IP.

0.4 Mo ool
0.3 WMMW
)\‘0.2 g ol
il

B=-20
0020 40 60 80 100

. # of Iterations o
Fig. 4: Convergence speed to a Market Nash Equilibrium

We study the convergence of our market model in Figure 4,
as part of EO7. To this end, we use a standard gradient descent
algorithm [18] on our real-world induced data, that converges
in a distributed fashion. Our primary performance metric is
convergence speed in terms of the number of iterations. In
Figure 4, we plot the evolution of A to its market equilibrium
value when § = —20 for different s, values. We note here
that this is a just a representative example of the multiple
parameters, i.e., the x¢’s and II’s, that converge to an MNE.
Other examples report similar trends. We observe that for
almost all examples, markets converge to a Nash equilibrium
within 30 iterations of a Macbook Pro laptop (2017 version)
with 16GB RAM. This at least indicates the possibility of the
existence of markets if personal data were to be traded in a
small-sized market consisting a few buyers. As part of future
plans, we plan to run larger scale field experiments to validate
our claims on information markets of large buyer sizes.
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Fig. 5: Ratio of Seller profit at MNE with and without data distortion, both w.r.t. the case when 3 = 0, i.e., the non-strategic case
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Fig. 6: Seller profit at an MNE with degrees of information transfer between buying firms, when x, = 1 (left) and k. = 2 (right)
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VI. RELATED WORK

Research in relation to mapping the economic type of
information with the degree of privacy risks they pose, is
new to the best of our knowledge. In this section, we briefly
review related literature pertaining to the existence and design
of information trading markets. We identified two strands of
research in this context: one rooted in the economics literature,
and the other rooted in the technical literature on privacy-aware
mechanism design.

The vision and benefits for information (privacy) trading
had their roots in arguments made in the 1970s by Chicago
school economists, Posner[19][20] and Stigler[21], in favor
of having increased social welfare. In later years, their ar-
guments were upvoted by information economists such as
Laudon[22] and Acquisiti[23] Varian [24], Odlyzko [25],
Schwarz [26], and Samuelson [27]. The primary thesis of
these scholars being that the lack of use of personal client data
will lead to opportunity costs and market inefficiencies (sub-
optimal states of economic social welfare) since it conceals
potentially relevant information from other economic agents
(the downstream data intermediary entities in Figure 4) that
eventually hamper the profitability of these agents. In contrast
to the Chicago-school views, a number of economists includ-
ing Hirshleifer[28][29], Burke[30], Wagman[3|],Daughety &
Reinganum[32], and Spence [33] are of the opinion that the
costs to the demand side of the market to acquire quality
client information may outweigh its social benefit, thereby de-
creasing social welfare. According to Varian[24], Odlyzko[25],
and Acquisiti[23], consumer data obtained (with or without
consent) can have negative effects on society welfare simply
because post transaction the consumers have little knowledge
or control over how and by whom their personal data will later
be used. This conjecture has recently been formally proven by
[34][35]. The firm (e.g., ad-networks) may sell the consumer’s
data to third parties (e.g., advertisers), which may lead to spam
and adverse price discrimination, among other concerns, and
subsequently lead to consensual consumers opting out of trade
in future. Regulation here can curb the adverse effects of these
negative externalities arising from trading and significantly
contribute to welfare efficient and complete markets (where
supply equals demand) [36][37]. Examples of practical ways to
implement regulations suggested in existing literature include
legislative property rights on consumer personal data shared
between the supply and demand side[22], and technical metrics
(e.g., differential privacy) being adopted by demand side
data intermediaries such as ad-networks to keep a check
on the degree of privacy breach[38]. From a non-privacy
perspective, De Corni et.al. [39] state that targeted advertising
in markets driven by the presence of private non-perturbed
consumer information can lead to higher equilibrium prices.
This result is in line with Levin and Milgrom[40], Berge-
mann and Bonatti[41], and Cowan[42] who design markets
improving match quality by disclosing consumer information
to downstream firms. The common takeaway message from
these papers is that such markets might be too costly to a
data intermediary — because of the informational rent that is
passed on to selling firms.
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Most existing technical works on privacy-aware mechanism
design [43][44][45][46][47][48][49] assume that there is a
trusted data holder (e.g., app). The private data, i.e., personal
consumer information, is either already kept safely to itself
by the data holder, or is evoked using mechanisms that are
designed with the aim of consensual truthfulness - i.e., What
the data holder purchases is the “right” of using consumers’
data in an announced way. A major direction in which our
work differs from existing work is in considering that data
holders are not trusted by consumers to keep their data private,
and may release it to agencies like ad-networks in return for
benefits. To this end, in the seminal trading work by [43],
consumers’ data is already known to the data collector (the
data collector here analogous to a buying side ad-network in
our work), and the selling side (analogous to the data holder
in our work) bid their costs of privacy loss caused by data
usage by the buying side, where each seller’s privacy cost is
modeled as a linear function of € if its sold data is used in
an e-differentially private manner. The goal of the mechanism
design here is to evoke truthful bids of seller cost functions.
In contrast, our setting is (a) more realistic in terms of data
seller cost functions that are assumed to be not linear but
convex, and (b) orthogonal to the [43] setting in the sense
that we deal with a single seller trading with multiple buyers,
rather than multiple sellers and a single buyer as in [43] - the
latter popularly calling for an auction-mechanism approach.
In addition, we also investigated on what types of information
trading in supply-chain data release frameworks, conditioned
on the economic type of sold data, will pose less privacy risks
in society, something of primal interest to regulators, and not
addressed by any existing work in literature. As a practical use-
case of modeling privacy trading, the authors in [50] design
a privacy trading mechanism for commercializing location
privacy in mobile crowdsensing services. More specifically,
they propose an auction-theoretic framework between workers
and the platform to trade location privacy data, given a
differential privacy induced leakage budget. However, though
they are similar in nature to our motivation in trading privacy
leakage, there is a significant fundamental difference between
their contribution and ours: we formally model oligopolistic
market competition between established buyer firms being
served by a data seller; in contrast, the players (workers) in
[50] are mobile end users distributed in a geographical locality
thereby only interacting with the platform through an auction,
and not traditionally competing in an oligopoly market.

Subsequent works [44][45][46][48] explore various mod-
els for seller valuation of privacy, especially the correlation
between the cost functions and the private bits. This line of
work has been extended to the scenario that the data is not
available yet and needs to be reported by the sellers to the data
collector, but the data collector is still trusted [47][51][52][49]
- whereas we assume that the data collector (the ad-network in
our case) is purposely buying consumer data from DHs (apps)
for selling to advertisers in return for monetary gains from the
latter. For more details on the interplay between differential
privacy and mechanism design, [53] gives a comprehensive
survey. In [54], the authors envisage a market model for
private data analytics such that private data is treated as a
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commodity and traded in the market. In particular, the buyer
(the ad-network in our case) uses a game-theoretic incentive
mechanism to pay (or reward) sellers for reporting informative
data, and the sellers control their own consumer data privacy
by reporting noisy data with the appropriate level of privacy
protection (or level of noise added) being strategically chosen
to maximize their payoffs. Like us, the authors in [54] assume
that utility parameters of individuals (buyers in our case) are
not private information. However, unlike them or as in any
of the above-mentioned works, we deal with the (orthogonal)
more practical problem of managing heterogeneous privacy
guarantee demands between the data seller (e.g., apps) and
multiple individual buyers (e.g., ad-networks), whereas the
above works deal with homogeneous privacy guarantees. Very
recently, the authors in [55] address the heterogeneous privacy
guarantee case. However, to address information asymmetry
on the seller side, their solution is restricted to the design of a
two-seller, single buyer contract based on a binary distribution
of seller privacy attitudes. In contrast, our solution is general
and addresses the multi-seller, single buyer setting, where
seller preferences in information asymmetry scenarios are
captured using supply functions.

VII. SUMMARY

In this paper our main goal was to investigate whether
specific consumer data types have a varying influence on
information privacy risks. The answer to this question will
guide policy makers to regulate information flow for ad-
exchange driven data markets in ways to maintain privacy
interests of upstream consumers. To this end, we investigated
and analyzed single-seller, multiple buyer information trading
markets where a consumer facing data seller (e.g., mobile app)
sells its aggregate clientele data in a privacy-sanitized manner
downstream to multiple strategic buyers (e.g., ad-networks,
retailers). We analyzed trading markets, built upon recent work
in [2], distinguished by two mutually exclusive economic types
of data being traded that entails different strategic actions
types by the downstream buyers: (i) those exhibiting strategic
substitutes and (ii) those exhibiting strategic complements. As
our main result, we showed that information trading markets
dealing with strategic substitutes data generally pose less
information privacy risks for society at market equilibrium,
compared to markets dealing with strategic complements data.
This is primarily because (a) buyers are not economically
incentivized to buy substitutes data from a seller when they
could (robustly) estimate such data, via a free-riding mecha-
nism or otherwise, from a correlation analysis of competing
buyer information, and (b) the seller does not gain in profit
to sell substitutes data above a certain threshold fraction of
strategic buyers and in addition is incentivized to add extra
noise to the data - thereby reducing IP risks arising from
statistical correlations. We observed that our main results
hold for both, markets where the seller faces a significant
penalty costs for privacy breach events, and liberal markets
where no costs are accrued by the user in the event of
a privacy breach of consumer data. We also analyzed the
state of privacy in society when single seller, multiple buyer
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information trading markets incorporate purposeful privacy-
sanitized data exchanges (either via free-riding, observing
behavior of competing buyers, collusion, or through other
paid sources) between strategic buying firms. Under public
knowledge of this assumption, our analysis resulted in similar
findings as mentioned above - mainly that a profit-minded data
seller is incentivized economically to (a) not sell data to all
possible buyers, and (b) sell more noisy consumer data to the
chosen buyers compared to the noise in the case when there
is assumed to be no data exchange between buying firms. As
a result, risk of privacy breaches are reduced in society. Our
contributions in this paper will serve as a recommendation tale
to regulators to effectively use a tradeoff knob when it comes
to allow trading appropriate quantity and quality of economic
types of data by selling firms.
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